Adv
deepaksoni
  • 0
Guru

If a, b, c, d are in continued proportion, prove that: (i) (a3+b3+c3) /(b3+c3+d3) =a/d (ii) (a2 – b2) (c2 – d2) = (b2 – c2)2 (iii) (a + d) (b + c) – (a + c) (b + d) = (b – c)2 (iv) a: d = triplicate ratio of (a – b): (b – c) (v) [ (a-b) /c+(a-c) /b]2 – [(d-b) /c +(d-c) /b)] 2 =(a-d) 2(1/c2-1/b2)

  • 0

This is an important ques from the Book ML Aggarwal class 10th,, chapter – 7, ratio and proportion.

It is given that a, b, c, d are in continued proportion and we have to prove the equalities based on the fact given in the question

Question 22, 7.2

Share

1 Answer

  1. Solution:

    It is given that

    a, b, c, d are in continued proportion

    Here we get

    a/b = b/c = c/d = k

    c = dk, b = ck = dk . k = dk2

    a = bk = dk2 . k = dk3

    ML Aggarwal Solutions for Class 10 Chapter 7 Image 43

    ML Aggarwal Solutions for Class 10 Chapter 7 Image 44

    Therefore, LHS = RHS.

    (ii) LHS = (a2 – b2) (c2 – d2)

    We can write it as

    = [(dk3)2 – (dk2)2] [(dk)2 – d2]

    By further calculation

    = (d2k6 – d2k4) (d2k2 – d2)

    Taking out the common terms

    = d2k4 (k2 – 1) d2 (k2 – 1)

    = d4k4 (k2 – 1)2

    RHS = (b2 – c2)2

    We can write it as

    = [(dk2)2 – (dk)2]2

    By further calculation

    = [d2k4 – d2k2]2

    Taking out the common terms

    = [d2k2 (k2 – 1)]2

    = d4 k4 (k2 – 1)2

    Therefore, LHS = RHS.

    (iii) LHS = (a + d) (b + c) – (a + c) (b + d)

    We can write it as

    = (dk3 + d) (dk2 + dk) – (dk3 + dk) (dk2 + d)

    Taking out the common terms

    = d (k3 + 1) dk (k + 1) – dk (k2 + 1) d (k2 + 1)

    By further simplification

    = d2k (k + 1) (k3 + 1) – d2k (k2 + 1) (k2 + 1)

    So we get

    = d2k (k4 + k3 + k + 1 – k4 – 2k2 – 1)

    = d2k (k3 – 2k2 + k)

    Taking k as common

    = d2k2 (k2 – 2k + 1)

    = d2k2 (k – 1)2

    RHS = (b – c)2

    We can write it as

    = (dk2 – dk)2

    Taking out the common terms

    = d2k2 (k – 1)2

    Therefore, LHS = RHS.

    (iv) a: d = triplicate ratio of (a – b): (b – c) = (a – b)3: (b – c)3

    We know that

    ML Aggarwal Solutions for Class 10 Chapter 7 Image 45

    Therefore, LHS = RHS.

    (v)

    ML Aggarwal Solutions for Class 10 Chapter 7 Image 46

    ML Aggarwal Solutions for Class 10 Chapter 7 Image 47

    ML Aggarwal Solutions for Class 10 Chapter 7 Image 48

    Therefore, LHS = RHS.

    • 0
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions