Adv
Rajan@2021
  • 0
Guru

Show that any positive odd integer is of the form (6m+1) or (6m+3) or (6m+5), where m is some integer.

  • 0

This question is taken from real numbers in which we have to prove that any positive odd integer is of the form (6m+1) or (6m+3) or (6m+5), where m is some integer.

Kindly give me a detailed solution of this question

RS Aggarwal, Class 10, chapter 1A, question no 6

Share

1 Answer

  1. Let n be the given positive odd integer.

    On dividing n be 6,

    Assume m be the quotient

    And r be the remainder.

    Then,

    By Euclid’s division lemma, we have

    n=6m+r, where 0r<6

    n=6m+r,

    where r=0, 1, 2, 3, 4, 5

    ⇒ 6m or (6m+1) or (6m+2) or (6m+3) or (6m+4) and (6m+5).

    But, n=6m, (6m+2), (6m+4) give even values of n.

    Hence, any positive odd integer is of the form (6m+1) or (6m+3) or (6m+5) Where m is some integer.

    • 0
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions