Adv
Rajan@2021
  • 0
Guru

Prove that: (secθ+tanθ)/(secθ-tanθ) = (secθ+tanθ)² = 1+2tan²θ+2secθtanθ

  • 0

This question is from trigonometry topic – trigonometric identities in which we have been asked to prove that (secθ+tanθ)/(secθ-tanθ) = (secθ+tanθ)² = 1+2tan²θ+2secθtanθ

RS Aggarwal, Class 10, chapter 13A, question no 26(ii).

Share

1 Answer

  1. We consider (secθ-tanθ)/(secθ+tanθ)

    =(secθ-tanθ)/(secθ+tanθ)×(secθtanθ)/(secθtanθ)

    =(secθ-tanθ)²/(sec²θ-tan²θ)

    =(secθ-tanθ)²/1

    =(secθtanθ

    =sec²θ+tan²θ2secθtanθ

    =(1+tan²θ)+tan²θ2secθtanθ          (sec²θ=1+tan²θ)

    =12secθtanθ+2tan²θ.

     

    • 0
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions