0 [email protected]Guru Asked: March 31, 20212021-03-31T09:29:00+05:30 2021-03-31T09:29:00+05:30In: CBSE Show that (a−b)^2, (a^2+b^2) and (a+b)^2 are in AP. 0 One of the basic question from arithmetic progression chapter in which we have been asked to prove that (a−b)^2, (a^2+b^2) and (a+b)^2 are in AP. RS Aggarwal, Class 10, chapter 5B, question no 5. arithmetic progressioncbseclass 10 solution Share Facebook 1 Answer Voted Oldest Recent MathsMentor Guru 2021-03-31T22:29:44+05:30Added an answer on March 31, 2021 at 10:29 pm Assume that (a−b)2,(a2+b2) and (a+b)2 are in AP. So, difference between two consecutive terms will be same. (a2+b2)−(a−b)2=(a+b)2−(a2+b2) (a2+b2)−(a2+b2−2ab)=a2+b2+2ab−a2−b2 2ab=2ab Which is true. Hence given terms are in AP. 0 Reply Share Share Share on Facebook Share on Twitter Share on LinkedIn Share on WhatsApp Leave an answerLeave an answerCancel reply Featured image Select file Browse Add a Video to describe the problem better. Video type Youtube Vimeo Dailymotion Facebook Choose from here the video type. Video ID Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs". Click on image to update the captcha. Save my name, email, and website in this browser for the next time I comment. Related Questions 50 circular plates each of diameter 14 cm and thickness 0.5 cm are placed one above the other ... A spherical ball of radius 3 cm is melted and recast into three spherical balls. The radii of ... How many balls, each of radius 1 cm, can be made from a solid sphere of lead of ... n the figure, BDC is a tangent to the given circle at point D such that BD = ... PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents P ...

Assume that (a−b)2,(a2+b2) and (a+b)2 are in AP.

So, difference between two consecutive terms will be same.

(a2+b2)−(a−b)2=(a+b)2−(a2+b2)

(a2+b2)−(a2+b2−2ab)=a2+b2+2ab−a2−b2

2ab=2ab

Which is true.

Hence given terms are in AP.