Adv
Rajan@2021
  • 0
Guru

In the figure given below, AB∥DC and AB=2 DC. If AD=3cm,BC=4cm and AD,BC produced meet at E, find (i) ED (ii) BE (iii) area of △EDC : area of trapezium ABCD.

  • 0

In the figure given below, ABDC and AB=2 DC. If AD=3cm,BC=4cm and AD,BC produced meet at E, find (i) ED (ii) BE (iii) area of EDC : area of trapezium ABCD

ML Aggarwal Avichal Publication class 10, similarity, chapter 13.3, question 13.b

 

Share

1 Answer

  1. From the question it is given that,
    ABDC
    AB=2DC,AD=3cm,BC=4cm
    Now consider EAB,
    EA/DA=EB/CB=AB/DC=2DC/DC=2/1
    (i) EA=2,DA=2×3=6cm
    Then, ED=EADA
    =63
    =3cm
    (ii) EB/CB=2/1
    EB=2CB
    EB=2×4
    EB=8cm
    (iii) Now, consider the EAB,DCAB
    So, EDCEAB
    Therefore, area of EDC/area of ABE=DC2/AB2
    area of EDC/area of ABE=DC2/(2DC)2
    area of EDC/area of ABE=DC2/4DC2
    area of EDC/area of $$\triagle ABE = \dfrac {1}{4}$$
    Therefore, area of ABE=4 area of EDC
    Then, area of EDC+ area of trapezium ABCD=4 area of EDC
    Area of trapezium ABCD=3 area of EDC
    So, area of EDC/area of trapezium ABCD=1/3
    Therefore, area of EDC: area of trapezium ABCD=1:3

    • 0
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions