What is the best solution of ncert class 10 of introduction of trigonometry , how i solve the exercise 8.1 question number 2 easily and simple way . This is very important question of trigonometry . In Fig. 8.13, find tan P – cot R
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
In the given triangle PQR, the given triangle is right angled at Q and the given measures are:
PR = 13cm,
PQ = 12cm
Since the given triangle is right angled triangle, to find the side QR, apply the Pythagorean theorem
According to Pythagorean theorem,
In a right- angled triangle, the squares of the hypotenuse side is equal to the sum of the squares of the other two sides.
PR2 = QR2 + PQ2
Substitute the values of PR and PQ
132 = QR2+122
169 = QR2+144
Therefore, QR2 = 169−144
QR2 = 25
QR = √25 = 5
Therefore, the side QR = 5 cm
To find tan P – cot R:
According to the trigonometric ratio, the tangent function is equal to the ratio of the length of the opposite side to the adjacent sides, the value of tan (P) becomes
tan (P) = Opposite side /Adjacent side = QR/PQ = 5/12
Since cot function is the reciprocal of the tan function, the ratio of cot function becomes,
Cot (R) = Adjacent side/Opposite side = QR/PQ = 5/12
Therefore,
tan (P) – cot (R) = 5/12 – 5/12 = 0
Therefore, tan(P) – cot(R) = 0