Adv
AnilSinghBora
  • 0
Guru

In an AP(iv) Given a3 = 15, S10 = 125, find d and a10. Q.3(4)

  • 0

In class 10th of arithmetic progressions who i solve this question in easy way of exercise 5.3 of the question is In an AP(iv) Given a3 = 15, S10 = 125, find d and a10.

Share

1 Answer

  1. Given that, a3 = 15, S10 = 125

    As we know, from the formula of the nth term in an AP,

    an = a +(n−1)d,

    Therefore, putting the given values, we get,

    a3 = a+(3−1)d

    15 = a+2d ………………………….. (i)

    Sum of the nth term,

    Sn = n/2 [2a+(n-1)d]

    S10 = 10/2 [2a+(10-1)d]

    125 = 5(2a+9d)

    25 = 2a+9……………………….. (ii)

    On multiplying equation (i) by (ii), we will get;

    30 = 2a+4d ………………………………. (iii)

    By subtracting equation (iii) from (ii), we get,

    −5 = 5d

    d = −1

    From equation (i),

    15 = a+2(−1)

    15 = a−2

    a = 17 = First term

    a10 = a+(10−1)d

    a10 = 17+(9)(−1)

    a10 = 17−9 = 8

    • 1
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions