Adv
Rajan@2021
  • 0
Guru

In ΔABC, AP : PB = 2 : 3. PO is parallel to BC and is extended to Q so that CQ is parallel to BA. Find: (i) area ΔAPO : area Δ ABC. (ii) area ΔAPO : area Δ CQO.

  • 0

In ΔABC, AP : PB = 2 : 3. PO is parallel to BC and is extended to Q so that CQ is parallel to BA. Find:

(i) area ΔAPO : area Δ ABC.

(ii) area ΔAPO : area Δ CQO.

ML Aggarwal Avichal Publication class 10, similarity, chapter 13.3, question no 10

Share

1 Answer

  1. From the question it is given that,
    PB=2:3
    PO is parallel to BC and is extended to Q so that CQ is parallel to BA.
    (i) we have to find the area APO: area ABC,
    Then,
    A=A … [common angles for both triangles]
    APO=ABC … [because corresponding angles are equal]
    Then, APOABC … [AA axiom]
    We know that, area of APO/area of ABC=AP2/AB2
    =AP2/(AP+PB)2
    =22/(2+3)^2
    =4/5^2
    =4/25
    Therefore, area APO: area ABC is 4:25
    (ii) we have to find the area APO : area CQO
    Then, AOP=COQ … [because vertically opposite angles are equal]
    APQ=OQC … [because alternate angles are equal]
    Therefore, area of APO/area of CQO=AP2/CQ2
    area of APO/area of CQO=AP2/PB2
    area of APO/area of CQO=2^2/3^2
    area of APO/area of CQO=4/9
    Therefore, area APO : area CQO is 4:9.

    • 0
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions