Adv
deepaksoni
  • 1
Guru

(i) cosec4 θ – cosec2 θ = cot4 θ + cot2 θ (ii) 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ = cot4 θ – tan4 θ.

  • 1

This is an important question taken from the Book

Book- ML Aggarwal
Board- ICSE
Publication- Avichal
Chapter- Trigonometric Identities
Chapter number-18
We have to prove that equality holds true.

(i) cosec4 θ – cosec2 θ = cot4 θ + cot2 θ 

(ii) 2 sec2 θ – sec4 θ– 2 cosec2 θ + cosec4 θ = cot4 θ – tan4 θ.

Class 10, chapter 18, trigonometric identities, ICSE board, ML aggarwal, question 20

Share

1 Answer

  1. Solution:

    (i) L.H.S. = cosec4 θ – cosec2 θ

    = cosec2 θ (cosec2 θ – 1)

    = cosec2 θ cot2 θ [cosec2 θ – 1 = cot2 θ]

    = (cot2 θ + 1) cot2 θ

    = cot4 θ + cot2 θ

    = R.H.S.

    (ii) L.H.S. = 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ

    = 2 (tan2 θ + 1) – (tan2 θ + 1)2 – 2 (1 + cot2 θ) + (1 + cot2 θ)2

    ML Aggarwal Solutions for Class 10 Chapter 18 - 24

    = 2 tan2 θ + 2 – (tan4 θ + 2 tan2 θ + 1) – 2 – 2 cot2 θ + (1 + 2 cotθ + cot4 θ)

    = 2 tan2 θ + 2 – tan4 θ – 2 tan2 θ – 1 – 2 – 2 cot2 θ + 1 + 2 cotθ + cot4 θ

    = cot4 θ – tan4 θ = R.H.S.

    • 1
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions