Give me the best way for solving the question of class 9th of Quadrilaterals of exercise 8.1 of math. Give me the easiest way for solving this question in simple way of question no. 12 ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.23). Show that (i) ∠A = ∠B (ii) ∠C = ∠D (iii) ΔABC ≅ ΔBAD (iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.
AnilSinghBoraGuru
ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.23). Show that (i) ∠A = ∠B (ii) ∠C = ∠D (iii) ΔABC ≅ ΔBAD (iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.] Q.12
Share
To Construct: Draw a line through C parallel to DA intersecting AB produced at E.
(i) CE = AD (Opposite sides of a parallelogram)
AD = BC (Given)
, BC = CE
⇒∠CBE = ∠CEB
also,
∠A+∠CBE = 180° (Angles on the same side of transversal and ∠CBE = ∠CEB)
∠B +∠CBE = 180° ( As Linear pair)
⇒∠A = ∠B
(ii) ∠A+∠D = ∠B+∠C = 180° (Angles on the same side of transversal)
⇒∠A+∠D = ∠A+∠C (∠A = ∠B)
⇒∠D = ∠C
(iii) In ΔABC and ΔBAD,
AB = AB (Common)
∠DBA = ∠CBA
AD = BC (Given)
, ΔABC ≅ ΔBAD [SAS congruency]
(iv) Diagonal AC = diagonal BD by CPCT as ΔABC ≅ ΔBA.