Form the equations of the question above.
Class 10th rd sharma pair of linear equations in two variables.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Sorry, you do not have a permission to add a post. Get the paid membership
Form the equations of the question above.
Class 10th rd sharma pair of linear equations in two variables.
Join our whatsApp community. Get all experts solutions for maths problems.
Solution:
Let the cost price of one table and one chair be ₹ x and ₹ y, respectively.
So,
The selling price of the table, when it’s sold at a profit of 10% = ₹ x + 10x/100 = ₹ 110x / 100
The selling price of the chair, when it’s sold at a profit of 25% = ₹ y + 25y/100 = ₹ 125y / 100
Hence, according to the question
110x / 100 + 125y / 100 = 1050 … (i)
Similarly,
The selling price of the table, when it’s sold at a profit of 25% = ₹ (x + 25x/100) = ₹ 125x/ 100
The selling price of the chair, when it’s sold at a profit of 10% = ₹ (y + 10y/100) = ₹ 110y / 100
Hence, again from the question,
125x / 100 + 110y / 100 = 1065 … (ii)
Re-written (i) and (ii) with their simplest coefficients,
11x/10 + 5y/4 = 1050…….. (iii)
5x/4 + 11y/10 = 1065…….. (iv)
Adding (iii) and (iv), we get
(11/ 10 + 5/ 4)x + (5/ 4 + 11/ 10)y = 2115
47/ 20x + 47/ 20y = 2115
x + y = 2115(20/ 47) = 900
⇒ x = 900 – y ……. (v)
Using (v) in (iii),
11(900 – y)/10 + 5y/4 = 1050
2(9900 -11y) +25y = 1050 x 20 [After taking LCM]
19800 – 22y + 25y = 21000
3y = 1200
⇒ y = 400
Putting y = 400 in (v), we get
x = 900 – 400 = 500
Therefore, the cost price of the table is ₹ 500 and that of the chair is ₹ 400.