Adv
AnilSinghBora
  • 0
Guru

Check whether the following are quadratic equations: (i) (x + 1)2 = 2(x – 3) (ii) x2 – 2x = (–2) (3 – x) (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (iv) (x – 3)(2x +1) = x(x + 5) (v) (2x – 1)(x – 3) = (x + 5)(x – 1) (vi) x2 + 3x + 1 = (x – 2)2 (vii) (x + 2)3 = 2x (x2 – 1) (viii) x3 – 4×2 – x + 1 = (x – 2)3 Q.1

  • 0

How i solve the quadratic equation of exercise 4.1 is easy method. It is very important type of question for board exam. This is my favorite question of math Check whether the following are quadratic equations: (i) (x + 1)2 = 2(x – 3) (ii) x2 – 2x = (–2) (3 – x) (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (iv) (x – 3)(2x +1) = x(x + 5) (v) (2x – 1)(x – 3) = (x + 5)(x – 1) (vi) x2 + 3x + 1 = (x – 2)2 (vii) (x + 2)3 = 2x (x2 – 1) (viii) x3 – 4×2 – x + 1 = (x – 2)3

Share

1 Answer

  1. (i) Given,

    (x + 1)2 = 2(x – 3)

    By using the formula for (a+b)2 = a2+2ab+b2

    ⇒ x2 + 2x + 1 = 2x – 6

    ⇒ x2 + 7 = 0

    Since the above equation is in the form of ax2 + bx + c = 0.

    Therefore, the given equation is quadratic equation.

    (ii) Given, x2 – 2x = (–2) (3 – x)

    By using the formula for (a+b)2 = a2+2ab+b2

    ⇒ x 2x = -6 + 2x

    ⇒ x– 4x + 6 = 0

    Since the above equation is in the form of ax2 + bx + c = 0.

    Therefore, the given equation is quadratic equation.

    (iii) Given, (x – 2)(x + 1) = (x – 1)(x + 3)

    By using the formula for (a+b)2 = a2+2ab+b2

    ⇒ x– x – 2 = x+ 2x – 3

    ⇒ 3x – 1 = 0

    Since the above equation is not in the form of ax2 + bx + c = 0.

    Therefore, the given equation is not a quadratic equation.

    (iv) Given, (x – 3)(2x +1) = x(x + 5)

    By using the formula for (a+b)2=a2+2ab+b2

    ⇒ 2x– 5x – 3 = x+ 5x

    ⇒  x– 10x – 3 = 0

    Since the above equation is in the form of ax2 + bx + c = 0.

    Therefore, the given equation is quadratic equation.

    (v) Given, (2x – 1)(x – 3) = (x + 5)(x – 1)

    By using the formula for (a+b)2=a2+2ab+b2

    ⇒ 2x– 7x + 3 = x+ 4x – 5

    ⇒ x– 11x + 8 = 0

    Since the above equation is in the form of ax2 + bx + c = 0.

    Therefore, the given equation is quadratic equation.

    (vi) Given, x2 + 3x + 1 = (x – 2)2

    By using the formula for (a+b)2=a2+2ab+b2

    ⇒ x2 + 3x + 1 = x2 + 4 – 4x

    ⇒ 7x – 3 = 0

    Since the above equation is not in the form of ax2 + bx + c = 0.

    Therefore, the given equation is not a quadratic equation.

    (vii) Given, (x + 2)3 = 2x(x2 – 1)

    By using the formula for (a+b)2 = a2+2ab+b2

    ⇒ x3 + 8 + x2 + 12x = 2x3 – 2x

    ⇒ x3 + 14x – 6x2 – 8 = 0

    Since the above equation is not in the form of ax2 + bx + c = 0.

    Therefore, the given equation is not a quadratic equation.

    (viii) Given, x3 – 4x2 – x + 1 = (x – 2)3

    By using the formula for (a+b)2 = a2+2ab+b2

    ⇒  x3 – 4x2 – x + 1 = x3 – 8 – 6x + 12x

    ⇒ 2x2 – 13x + 9 = 0

    Since the above equation is in the form of ax2 + bx + c = 0.

    Therefore, the given equation is quadratic equation.

    • 1
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions