• 0

Solve for x and y: x/a+y/b=a+b, x/a²+y/b²=2

  • 0

This is the basic and exam oriented question from linear equations in two variables in which we have given two equations x/a+y/b=a+b, x/a²+y/b²=2 and we have been asked to calculate the value of variables x and y from the given equations

Kindly solve the above equations

RS Aggarwal, Class 10, chapter 3B, question no 50


1 Answer

  1. x/a+y/b-(a+b) = 0……………..(1).

    x/a^2+y/b^2–2 = 0…………………(2).

    x/{-2/b+(a+b)/b^2} = y/{-(a+b)/a^2+2/a} = 1/{1/ab^2–1/a^2b}.

    x/{(a-b)/b^2} = y/{(a-b)/a^2} = 1/{(a-b)/a^2.b^2}.

    x.b^2 = y.a^2 = a^2.b^2.

    x= a^2.b^2/b^2 =a^2. Answer.

    y =a^2.b^2/a^2 = b^2. Answer

    • 0
Leave an answer

Leave an answer


Choose from here the video type.

Put Video ID here: Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions