Adv
Rajan@2021
  • 0
Guru

Given f(x)=ax 2 +bx+2 and g(x)=bx 2 +ax+1. If x−2 is a factor of f(x) but leaves the remainder −15 when it divides g(x), find the values of a and b. With these values of a and b, factorise the expression. f(x)+g(x)+4x 2 +7x

  • 0

We have been asked to determine the values of a and b from given express f(x)=ax2+bx+2 and g(x)=bx2+ax+1. If x2 is a factor of f(x) but leaves the remainder 15 when it divides g(x), With these values of a and b, factorise the expression. f(x)+g(x)+4x2+7x

ML Aggarwal, Avichal Publication, Factorisation, chapter 6, question no 27

Share

1 Answer

  1. Given

    f(x)=ax2+bx+2 and
    g(x)=bx2+ax+1
    x2 is a factor of f(x)

     By factor theorem,
    f(2)=0
    a(2)2+b(2)+2=0
    4a+2b+2=0
    By dividing both sides by 2,
    2a+b+1=0(i)

    Also given that, g(x) divide dby (x2), leaves remainder 15
     By remainder theorem,
    g(2)=15
    b(2)2+2a+1=15
    4b+2a+1+15=0
    4b+2a+16=0...(ii)

    Now, subtracting equation (i) from equation (ii), we get
    (4b+2a+16)(2a+b+1)=00
    4b+2a+162ab1=0
    3b+15=0
    3b=15
    b=315=5

    Substituting this value in equation (i), we get
    2a+b+1=0
    2a5+1=0
    2a4=0
    2a=4
    a=2

    f(x)=ax2+bx+2=2x25x+2
    g(x)=bx2+ax+1=5x2+2x+1

    Then, f(x)+g(x)+4x2+7x
    =2x25x+25x2+2x+1+4x2+7x
    =x2+4x+3
    =x2+3x+x+3
    =x(x+3)+1(x+3)
    =(x+1)(x+3)

    • 0
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions