Adv
SanuByahut
  • 0
Newbie

A petrol tank is a cylinder of base diameter 21 cm and length 18 cm fitted with the conical ends each of axis length 9 cm. Determine the capacity of the tank.

  • 0

In this question we have to determine the capacity
of the tant a petrol tank is a cylinder of base
diameter 21 cm and length 18 cm fitted with the
conical ends each of axis length 9 cm.

This question is from r d sharma class 10 maths.
I found this question while doing mensuration of
class 10.
I need help in getting the solution.

Share

1 Answer

  1. Given,

    Base diameter of the cylindrical base of the petrol tank = 21 cm

    So, its radius (r) = diameter/2 = 21/2 = 10.5 cm

    Height of the Cylindrical portion of the tank (h1) = 18 cm

    Height of the Conical portion of the tank (h2) = 9 cm

    Now, we know that

    The volume of the Cylindrical portion (V1) = πr2 h1

    V1 = π(10.5)2 18

    V1 = 6237 cm3

    The volume of the Conical portion (V2) = 1/3 × 22/7 × r2 × h2

    V2 = 1/3 × 22/7 × 10.52 × 9

    V2 = 1039.5 cm3

    Therefore, the total volume of the tank (V) = 2 x volume of a conical portion + volume of the Cylindrical portion

    V = V1 + V2 = 2 x 1039.5 + 6237

    V = 8316 cm3

    So, the capacity of the tank = V = 8316 cm3

     

    • 0
Leave an answer

Leave an answer

Browse

Choose from here the video type.

Put Video ID here: https://www.youtube.com/watch?v=sdUUx5FdySs Ex: "sdUUx5FdySs".

Captcha Click on image to update the captcha.

Related Questions