an important question from the book -ML aggarwal( avichal publication)class 10, Arithmetic Progression……..
Find the sum of two middle most terms of AP -4/3, -1, -2/3,………, 4 1/3.
Arithmetic Progression Chapter 9, ML Publication Class10
Rajan@2021Guru
Find the sum of two middle most terms of AP -4/3, -1, -2/3,………, 4 1/3.
Share
First term a = \frac{-4}{3}3−4
Common difference = -1 + \frac{4}{3}34
= \frac{1}{3}31
nth term = a(n) = \frac{13}{3}313
\sf\orange{\underline{\sf Solution :}}Solution:
∴ nth term of an AP = a + (n – 1) * d
⇒ \frac{13}{3}313 = \frac{-4}{3}3−4 + (n – 1) * \frac{1}{3}31
⇒ \frac{13}{3}313 + \frac{4}{3}34 = (n – 1) * \frac{1}{3}31
⇒ \frac{17}{3}317 = \frac{(n – 1)}{3}3(n−1)
⇒ 17 = (n – 1)
⇒ n = 18
∴ So, the given ap contains 18 terms. The middle terms are (\frac{n}{2}2n ), (\frac{n}{2}2n ) + 1.
= (\frac{18}{2}218 ), ({18}{2}182 ) + 1
= 9,10
Sum of two middle terms:
= 9th term + 10th term
= [a + (9 – 1) * d] + [a + (10 – 1) * d]
= [a + 8d] + [a + 9d]
= \frac{-4}{3}3−4 + 8(\frac{1}{3}31 )] + [\frac{-4}{3}3−4 + 9(\frac{1}{3}31 )]
= [\frac{-4}{3}3−4 + \frac{8}{3}38 + [\frac{-4}{3}3−4 + 3]
= \frac{-4}{3}3−4 + \frac{8}{3}38 – \frac{4}{3}34 + 3
=\frac{-8}{3}3−8 + \frac{8}{3}38 + 3
= 3.